
i 
i 
i 
i 
i 

[ 

: 

*m i in wmmm iii w 

a 

MAXIMIZING A SECOND-DEGREE POLYNOMIAL 

ON THE UNIT SPHERE 

BY 

GEORGE E. FORSYTHE and GENE H. GOLUB 

HARD CC'Y       $. ^ ^ ^ 

MICROFICHE      $. ^ i'"0 

t>**cs 

TECHNICAL REPORT CS16 

FEBRUARYS, 19» 

S-tr-, f 

L 

COMPUTER  SCIENCE  DEPARTMENT 
School of Humanities and Sciences 

STANFORD UNIVERSITY 

v^ -v 

DDC 

MAR 4   1965 

Uljcx^ranns] 
DDCIRA   E 

f? r<\ r^'w ^iWi 1^ 



I 
I 
I 

(, 

[ 
i: 

[ 

MAXIMIZING A SECOND-DEGREE POLYNOMIAL ON THE 

UNIT SPHERE J 

by 

George E. Forsythe 

and 

Gene H. Golub 

ABSTRACT 

Let    A    be  a hermitian matrix of order    n,    and    b    a known vector 

n H 
in    C  .       The problem is to determine which vectors make    ^(x) =  (x-b)    A(x-b) 

H 
a maximum or minimum on the unit  sphere    U = fx   :  x x =  1} .     The problem 

is reduced to the determination of a finite point set,  the  spectrum of 

(A,b).     The theory reduces to the usual  theory of hermitian  forms when    b  =  0. 
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1.    The problem. 

Let    A    be a hermltlun square matrix of complex elements and order    n. 

Let    b    be a known n-vector of complex numbers.    For each complex n-vector 

x,    the nonhomo^cneous quadratic expression 

(1.1) *(x) = (x-b)HA(x-b) 

(H    denotes complex conjugate transpose) is a real number.     The problem, 

suggested to us by C R.  Rao of the Indian Statistical Institute, Calcutta, 

is to maximize  (or minimize)    ♦(x)    for complex    x    on the unit sphere 
u 

S =  (x:  xx = 1) .    Since    *    is a continuous function on the compact set    S, 

such maxima and minima always exist. 

In summary,  our problem is: 

u 
(1.2)        maximize or minimize *(x) subject to x x = 1 • 

The purpose of this note is to reduce the problem (1.2) to the deter- 

mination of a certain finite real point set which we shall call the spectrum 

of the system (A,b) (defined at end of Sec. l), and show that a unique 

number \    in the spectrum determines the one or more x = x  which maximize 

^(x) for given b. Theorem (^.l) is the main result. The development is an 

extension to general b of the familiar theory for the homogeneous case when 

b = 9, the zero vector. No consideration to a practical computer algorithm 

is given here. 

In Sec. T we show that determining the least-squares solution of an 

arbitrary system of linear equations Cy = f, subject to the quedratic 



constraint    y y - 1>     is a special case of problem (1.2). 

Phillips  (9*2) and Twomey (9-3) begin the actual numerical solution 

of certain integral equations by approximating them vith algebraic problems 

very closely related to the minimum problem (1.2). 

Let    X..  < X.0 <  • • •  < X.      be the  (necessarily real) eigenvalues of    A, 
i —   c: — —    n 

and  let    [u,,...,u  }     be a corresponding real orthonormal set of eigenvectors, 

with    Au,   = X...u.   (i=l,...,n). 
1      X  1 

Let a given b be written 

n 

(1.3) b= k ^ 

(1.U) Theorem.  If x is any vector in S for wh^ch ^(x) is stationary 

with respect to S,  then there exists a real number X. = \(x) such that 

(1.5) A(x-b) = Xx  , 

(1.6) x x = 1 

Conversely, if any real \    and vector x satisfy (l.^, l-ö), then 

x  renders ^(x) stationary. 

Proof.  Let x  be a point of S. Now, as shown in lemma (8.7), 

^(x) is stationary at x  with respect to x  in S,  if and only if there 

H H 
exists a real Lagrange multiplier \    s'irh that ^(x) = (x-b) A(x-b) •• X x x 

is stationary at x  with respect to all neighboring complex vectors x. 

Since 

0 = ^ grad Y(XO) = A(xo-b) - ^ xo , 

the theorem is proved. 



To see what conditions are satisfied by the    \    of theor"*!!! (l.U), we 

note that the system (l.5>  1.6) is equivalent to the system 

(1.7) (A-Xl)x  = Ab    , 

(1.8) xHx = 1    . 

Let 

n 
x  = ^ x^     . 

Then (l.T) is equivalent to 

n 
(1.9) £    (X.->c)x u    =   r   \ b u 

i=l i=l    ^ ■L i 

Definition. By the spectrum of the pair (A,b) we mean the set of all 

real \ for which there exists an x such that (l.T) and (1.8) are satisfied. 

Given any \,  x satisfying (l.f) and (1.8), we shall say that x 

belongs to X,, and frequently vrite x in the form x . 

Note that the spectrum of  (A,6) is the ordinary spectrum (X. )  of 

A. 

2.  Special case: no \.b = 0. 

Assume for the present section that X. b. / 0 (all i). This implies 

that all \. f 0, i.e., that A is nonsingular. If X, is in the spectrum 

of (A,b),  (1.9) implies that X. ^ X  for all i, and also that 



I 

(2.1) Xi  = £—£ (l=rl,...,n) 

Then the requirement that 

H ri 

{2.2) x  =    ^   IxJ^l 

is equivalent to the condition 

(2.3) g(g = £ T—V = 1- 
i-1  l^-x 

Although all \    corresponding to stationary values of ^(x) are 

known by theorem (1.4) to be real, it is useful to define g(X) by (2.3) 

for all complex X. not in (X.,). 

Let G be the set of complex numbers X. such that g(X.) = 1. 
n 

For small enough j^    1^.. | > G is the union of a simple closed curves in 
i=l 

the complex plane, the K-th of which surrounus k  .    As the  |b.| grow, 

adjacent curves first coalesce in double points, and then merge into single 

curves.  For very large values of all  |b. j, G is one simple closed curve 

including all  fX.]  in Its interior.  The family of sets  G resembles the 
  n 

family of   lemniscates     ]   j       1^-^-1   - const. 
i=l        1 

Note,  moreover,  that    g{K) > 1    for    X.    inside any component curve 

G      of    G,    while    i,{r-) < 1    in the exterior of all components    G.    of    G. 
J J 

Now we shal.1 show for the special case of Sec. 2 that each X. in 

G determines a unique x  which satisfies 'l.T, 1.8).  For that x 



(2.4) HxX) =f(\)    , 

where we define    f    by 

o n   MbJ2 

(2.5) t{\)  -  \X\2   £     ^—^    . 
i=i |xi.\r 

Fix    X.,    and drop the superscript    \    on    x.    To prove (2.U), note that 

(1.7) says    (X1-\)x1 = ^i^1-    Thus 

(\1-\)(x1-b1) = \ibi - bi(Xi-x) 

= Xb      . 

Hence 

xi ■ Di ■ r^\  > 

and 

n 
4 (x)  =    2   ^|x   -b   | 

i=l    i     ^^    1 

= IM2  E  ^2 
i=i |xrM 

= f(x}   , 

proving (2.4). 

Since the Lagrange multipliers    X.    must be real,  the spectrum of 

(A,b)    is the  intersection of    G    with the real axis.    This consists  of from 

5 



2 to 2n distinct real numbers. How many numbers are actually in the 

spectrum depends on b; this will be discussed in Sec. 5 for n = 2. 

We wish to determine which \    in the spectrum corresponds to the 

maximum [minimum] value of f(0. Let G. be any component curve of the set 

G. 

(2.6) Theorem. The maximum and minimum real parts of \,    for X, in any 

one G., both occur for k    on the real axis. 

Proof.  Let \ = a + if, with a,T real. Then 

x2 i- I2 

gU) = &An,i)  = T      5 ö 
1      iTL (a-X.r + T 

Heace, for T > 0 and fixed a, g(X.) ct^ictly decreases as T increases 

Then in the upper half plane T > 0, any line a = constant intersects G. 

in exactly one point. The theorem follows from this. 

Definition.  Le\, ■'V^ J  denote the unique real value of \    of 

':.aximum [minimum) real part in the set G. 

(2. "^) Theorem.  Under the assumptions that A is regular (.i.e., \    £  0 

for al1  1 ) and b / 0 (i=l,2,...,n), for all \  hi G such that 

\ / Ap,  \ / A.  we have 

f(AL) < f(0 < fiA^)     . 

2    2 
Proof.  Let a. = \     |b |   (i=l,...,n).  Introduce two independent 

complex variables k,^,    where n will later be set equal to X..  In order 

to study the gradients of the functions g, f, and h  (defined below) for 



'.   complex \,    we shall use the tools of Sec. 8. This requires extending 

these functions into the space of X and ^. 
I 
! 

Let    X  = a + it    (U,T    real).    For all ccoiplex    \ ^ \.,    define the 
i 

functions    g1    and    g^    by 

i 

g(^) = S1{v,v)  = ggUÄ)    , 

where 

n 

^^' A \'^K-^ 
(This definition is consistent with (2.3).) Then 

ig^^H? _ ,    by lemma  (8.1) 

(2.Ö) 
n 

iTL (\i-\)(xi.\)
2 

ai 

k'-   * l^-M -(V^ 

For all complex    \ { \ ,    define    f(X)    by (2.5).    We then define 

the functions    f,     and    f      by 

f{X) = f^a.T)  = f2{k,\)    , 

where 



Then 

n      ai 

ST , by lemma (8.1) 
H=X 

n    a.        n 

= ^ I  —'—' ^ E 
i=l  X.j^-M      i^l ^i(^i-^)(^i-^)2 

n    a, 

1=1 \i|x.1-\p 
1 + 

\-K 

n     a^^ 

iTi U.-xl2 \i-^l
c:(vi-\) 

= A, by (2.8) 

j-.e. 

(2.9) 
^2j        r^- 

While it le possible to use (2-9) to study the behavior of f{\)    on 

the set G where g(X,) - 1 = 0,  it is more convenient here and in Sec. 

3 to introduce a new function h(\), which agrees with f(X) on G. For 

all complex k f \.,  define 

8 



(2.10) 
\+\ 

h(X) = t{\) +^ [l-g(X)]    , 

and note that 

(2.11) h(\) = f(X), for    X e G    . 

As with    f    and    g,    ve Introduce functions    h,    and    lu    so that 

h(x) = h1(a,T)  = hgCX^)    , 

where 

Then 

h2(\^) = f2(\^) + ^ [l-ggCX^)] 

(2.12) 
ah2 

T 

i 

Hence 

(2-13) 

/dh dh  \ dh 

äh 



~~-----------------------------------------------------------------------

Now any component Gj of the set G where g(~) ; 1 encloses a 

region where g( ~) > 1. On G the gradient vector of g , 

is non- zero, is normal 0 Gj, and points to the interior of Gj . Then, 

by (2 .12), the gradient vector of h on Gj ' namely 

dhl dhl ( ~ as1) d(T + i d-t = i 'T d(T + i d-t 

is non- zero for 'T f 0 and points along the tangent to Gj i n t he direct ion 

o increasing ~. He~ce 

h(~) is stri tly increasing , as ~ traces in 

(2.1 ) 

the direction of increasing rr . 

Fro (2.1 ) i t follows that h ( ~) assumes its maximum valu , for each 

separate camponen curve Gj 0 G, at th point t'j on Gj of maximum 

real part. B,y theorem (2 .6), t'j is on the axis of real ~ . 

No e ~hat setting IJ =~=~ in (2 .12) yields the result that 

(2 .15 ) h I ( ) : l - g(~) J for real ~ 

To complete the proof of the present theorem, we mu~h show that f(~) 

is larger at the point aj of ~east real part on t he component Gj of G 

10 



•• than it is at the right-most point    ß    ,     of the component    Gi  T     of G 

immediately to the left of    G  . 
i J 

Note that    g     is continuous  for    \ €   [ß    i>aJ*    and that 

gißj^) - g(aj)  = J     but    g(\) < 1    for    ß^^ < \ < OCy    Then 

h(aJ) = h(ßJ ^ + /    J    h'(X)dX 

= h(ß    J +  T   J     [l-g(X)ldX    ,    by (2.15) 

Vl 

> Mßj.-L), since    g(X) < 1     . 

Thus 

(2.16) h^j.l) < h(aj)    ' 

as was  to be proved. 

We conclude that    h(\)    increases,  as    \    increases along the real 

axis between adjacent  components  of    G.     Since    h(\)  = f(X.)    on    G,    we 

see from (2.lU) and   (2.16) that 

max    t{\)  = t{\)    , 
\  CG * 

min    f{\)  =  fCA. ) 
X  GG L 

11 



It follows trivially from theorem (2.7) that the maximum and minimum 

values of f(X) over the real numbers in G (i.e., over the spectrum of 

(A,b) in the present case) are also f(^0 and f(AT ),  respectively. 

By (1.9)> our condition that no X^b =0 implies that ^ ^ ^1  for 

all  i and for all \  in G. Hence A_  and A^ are not eigenvalues of 

A,  and so neither A - A^ I nor A - A^I  is a singular matrix.  Therefore 

we can solve equation (l.T) uniquely for x    and x . : ^      J max      min 

Xmin = xAL MA-^D^Ab . 

These equation! give unique solutions to the problem of minimizing and 

u 
maximizing      ^(x)  =  (x-b) A(x-b),    for nonsingular    A    and    b    such that 

no b.   - 0. 

It would be desirable  to be able  to prove  that    h(a   ) < h(ß,),     in 

the  notation of theorem (2.7), without analyzing    h{k)    and    g(^)    for complex 

values  of    \. 

3.     General case:     Some     X. b    = 0, 

We now  study  the  general case where  one  or more    \.b.   - 0.     To be 

explicit,  let       C  -■=   {0£ :    X,  b        0},     a set  of   integers.     We wish to examine 

the  spectrum of     (A,b). 

Define   X   as  the   set     [X  : a   £     C)- 

12 



First, given one a € ^J, if ^ ^ V. and ^ is in the spectrum 

of (A,b) with corresponding vector x , then (1.9) shews that x = 0. 

Thus, 11  \  is in the spectrum but not in the set  oC ,  then x = 0 

for all a € (^ and, Just as in the derivation of (2.3),  X. will satisfy 

the equation 

n  \2   I* I2 

^ Z  ^r-1 
i=l i^.xr 

Conversely,  any real solution    \    of   (3-1)    which  is  rot  in the set     #0 

will be In the  spectrum of    (A,b),     and  its corresponding vector    x      will 

have    xa  = 0    for all   a    £   C .     If we interpret    0/0    in  (3.1) as    0, 

then it  is  possible that some eigenvalue    \      in  JC   will also satisfy  (B«!^- 

If so,   we will  show that this    X,      is  also in the spectrum of    (A,b).     How- 

ever,   the  spectrum may also contain eigenvalues    \,      In   oC   which do not 

satisfy {'j.l),   as we shall  now show.     No eigenvalue    X.,     not  in  ^C   can 

be  in  the  spectrum,  because    k  - k       would make  the  left  side of (3-1) 

equal   to    00   . 

Fix attention on one    K,     for    k    c    L •    We wish to examine the 

possibility  that  this     K.      is   in  the   spectrum of     (A,b).     Let    m    be  the 

nultiplicity of     \.     as  an eigenvalue   of    A.     Let     £?     =   [i:   \= \,]     so 

that card     ($k)   = m.     If    \       is   in the spectrum,   then  (1-9)  shows  that 

X b    - 0    lor all    Q    jn    R)   .     Moreover,  if    \      is   in the  spectrum,  then 

X 
the corresponding vector x = x k has the properties 

xi=r^r     '' ^ K> ' 

13 



and, by (2.1), also 

0      „    ^ IM2 

(3-2) E.    |xJ2=     Z        1      ' 
it\ H'K K-\l 

2    - 
< 1 

Conversely,   if (3'2) holds  then we can always  define    x       for all 

(_   f*       in  such a way that 

0-3) Z,     |x.|2 = 1 -      £ 
\   IbJ2 

ie^1'      ir\\h-s 

Hence,  by (3.2) and  (3-3)* equation (1.8) holds and,  since fl.7) is 

satisfied,    X.      is  in the spectrum of    (A,b). 

If equality holds in (3.?) then    x      must be    0    for all    i   €   ß   ; 

i.e.,    \,     satisfies  ii.l), and    x is unique.    But if  inequality   < 

holds  in (3«2),  then there is an    (m-1)-dimensional sphere   X^   of values 

of    {x  ),    for    i   e   *>.,    which satisfy  (3.3).    For,  if a point 

(x.   ,•.•,x     )     is  in   TJ,    then so are all points  of form 
1 m 

10 19 
(xi e       ,...,x1  o    m)     (all    Ö.     real)     , 

1 m 

since      £-> jx   I'     Is constant for all of these.     In this  case 

uniqueness  of    x is lost.    The sphere   Is analogous  to (Jr fact is a 

generalization of)  the sphere of unit eigenvectors  of a hermitian matrix 

A    belonging to an eigenvalue of multiplicity    m . 

14 



Note that an inequality < in (3'2) states that X  is in the 
* x 

exterior of the graph 

2 u i2 

= i X :  L n   ~—V = 1 f ' I   i ^ Sk l^.x'
2    J 

G = 

i.e.,  \  can be Joined to » by an arc not cutting G. Thus, in brief, 

the Gpectrum of (A,b) consists of the union of all real numbers in the set 

n  ^ |b.|2    ^ 
(3.M G =^ X : £  -± ^- = 1 ^ , 

^   i=i U.-xl2    J 

where we interpret 0/0 as 0, with those numbers  X  which are exterior 

to the graph G.  (If G is the null set, then b = Ö and the spectrum 

of (A,ö) consists of all eigenvalues X, . ) 

We must now examine ^(x ) for X in the spectrum of  (A,b).  The 

study of ^(x ), for real X e G in (3.U) is the same as in Sec. 2, 
1 

and yields the same results (2.4) and (2.5):  First, for X £  G, 

p n  X.|b |2 

t>{x)  = f(X) --  |Xp T —-—i— , where O/O = 0.  Second, let nD, 
i=l |x.-x|2 R 

be the right-most [resp. left-mostj points of G.  Then f(uD)  maximizes n 

[resp.     f((aT )    minimizesj     f(x)     for    X    t     G.     It  remains to consider 

^(x     ),     for eigenvalues    X       outside    G. 
K 

15 



(3.5) Theorem.  For any X In the spectrum of (A,b) ve have 

(3.6) H*)  = h(0 = f{\)  + \[l.g{\)]     , 

where f(\.)  Is given by (2.^), with 0/0 Intepreted as 0. 

Proof.  Take any X. In the spectrum of (A,b). 

If X, ^ X. (k=l,...,n), then X.  £ G, and everything proceeds as 

in the proof of (2.4), showing that *(x ) = f(X.). Since g(\) = 1, we 

have prove! (3«6) when X. / X,. . 

If X, = X. , an eigenvalue of A, let x.  denote the i-th coordinate 
x. 
k 

of any x   which satisfies (1.5) and (1.6) (and hence (3-2) and (3.3)). 

Since X,  is in the spectrum of (A,b), we have X. b. =0 for all 

i € wv,    where $,  is defined above after (3'l)> and as 

\i|xrbi|
2 = ^IxJ2 = ^k|x1|

2,  for all i € ^. Then, by (3.3), 

(3.7) 

.   Sn   xilVbil2 -\ 
i   € 

Xilbil 
2   1 

1 t £k (vV2J 

= X. 
Ä    X±   lbi 

1 - E 
1=1 {\-\f J 

,    where    0/0 = 0 

Moreo.er,  like   (2.4) we can prove 

16 



,2       ,2        P "-l   l"!^ 

i r /9k 
i i i       11 ßk (\- 

(3.8) 
P    n      X.     |b. | 

= xv   I!     ^ =-5    '    where    0/0 = ü 
k 1=1    (X^X^2 

Adding (3-7) to (3-8), we get 

*(xX) = t   \   IVbl 
1=1 1  ■L -^ 

i2 

(3.9) ^l i -r1^^ 

f(xk) + \ti-g(\)] 

2 

1=1 (\^k) 

= h(Xk)  . 

This proves (3.6) when X. = X. . 

It Is property (3.6) of h which motivated our use of h In Sec. 2, 

Note. It la easily shown from (3.6) or (3.9) that, for all X in 

the spectrum of (A,b), 

n  X |b |2 

(3.10)        h(x) - X + X £       \ .  — ,      where O/O - 0 . 
1-1    *1 

If X Is In the spectrum of (A,b), but Is not an eigenvalue of A, 

we can derive (3.10) as follows. Let x belong to X. Rien 

17 



*(x) = (x-b)HA(x-b) 

(x-bAx ,   by (1.5) 

X x x - \ b x 

= \ - \ bHx  ,  by (1.6) 

= X - X bH(A-Xl)"1Ab  ,   by (l.?) 

n  Xi IbJ
2 

We shall not make use of (3J-0 ) here. 

We now usf formula (3«6) to extend the domain of h to all real \ 

where g(X) < •, i.e., to all \    except where, for some 1, \ = \. 

and ^4^4 / 0- 

As stated before (3«5)» ve know that the largest value of *(x ) = h(X.) 

for X In G occurs at the right-most point n_ uf G.  It remains to 
n 

see whether h(Xk) may be still larger for any X  in the t-pectrum of 

(A,t),  if ^R < Xk. 

The answer is furnished by formula (2.15), which is valid for the 

general case of Sec. 3 with the understanding that O/O = 0. Thus h is 

increasing on all segments of the real axis between or exterior to components 

of the curve G. It follows that h(X) takes its maximum at the rightmost 

point Ap of the spectrum of (A,b) and its minimum value at the left- 

most point A-  of the spectrum of (A,b), whether or not these are 

eigenvaluee of A. 

18 



From the considerations following {3-3)> we see that the maximizing 

x     is unique  if    -V,   €      G.    If,  however,    A^     is not in    G    and    is  an 

eigenvalue of    A    of multiplicity    m,    then the maximizing    x     include all 

points of un    (m-l)-sphere of nonzero radius,  whose center is not at    0 

when    b ^ 9. 

The above  result about    A^    and    A^     for the case where  some    ^..b.   - 0 
R       L i i 

can be obtained by continuity from the case where no X.b. =0.  It is not 

clear that we could use continuity to deduce the nature of the maximizing 

and minimizing vectors, for multiple roots. 

k.    The main result. 

In Sees. 2 and 3 we have proved our result: 

(4.l) Theorem. Given A,  hermitian with eigenvalues (X..), and b, 

arbitrary, define  (b.} as in (1.3)-  Then the spectrum of  (A,b) 

consists of all real \    such that 

n  x.2 |b.|2 

i=l \\ -xf 

together with each eigenvalue K      of A  for which g(^, ) < 1. 

For each X,  in the spectrum with g(\) - 1, a unique x  is 

found by solving (l.T, 1.8). For each K     In the spectrum with g(X) < 1, 

there exists an (m-l)-sphere of x  satisfying (l.7> 1-8), where 

m = card [\,:   \ .   -  ^. } • 
J  J   K 
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Each x  so found renders ♦(x) stationary on S. Let 

A = max(X. : k   £     spectrum); let A^ - min(X. • \   £     spectrum). Let x 

\ \ 
- any x ; let x   = any x . Then ^(x . ) minimizes ^(x) on S, 

and *(x  ) maximizes *(x) on S.     max         — 

5- The number of points In the spectrum. 

As we noted In Sec. 2, If A Is of order n, then the spectrum of 

(A,b) contains anywhere from 2 to 2n real numbers. When does it have 

the full amount 2n? If any X..b = 0, then the discussion of Sec. 3 

showed that the spectrum necessarily has fewer than 2n points. So we 

are limited to the case where all X,.b / 0. But then, as shown in Sec. 

2, we know that the spectrum is the intersection of the graph of 

Ä ^i lbl|2 
(5.1) M = Z   1    g 

for real \    with the line n = 1. 

The graph of (5'1) for real \ consists of n + 1 branches between 

the n vertical asymptotes \ - \.     (i-l,...,n).  Since  ^ > 0 for all 

\, and n -♦ 0 as \ -» 00 and X. -► - «, the right-most and left-most 

branches necessarily cut ^ = 1. The spectrum has the full number 2n of 

points if and only if each of the n - 2 interior branches of the curve 

reaches its minimum with u < 1. For general n a condition for this is 

probably too complicated to derive. For n - 2, however, we can answer 

the question, as follows: 
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(5-2) Theorem. 

(5-3) Let n = 2,    and assume A is in diagonal form vith \,   < \p• 

If the spectrum of (A,b) consists of h    distinct numbers, then 

(5.M 0 < jb^J  and  0 < jb^]  , 

and also 

2       2        2 

(5-5) lblXll3 + IV2l3 < ^2-Xl)3    • 

(5.6) Conversely, if (5-M and (5-5) hold, then the spectrum of 

(A,b) consists of h    distinct numbers. 

Proof of (^.3).  Let a - K-bJ2 (1=1,2).  If either a  or a^ 

were zero, then t1ie development in Sec. 3 shows that the spectrum would con- 

sists of at most 3 poin.r;.  Hence a > 0 and a- > 0;  i.e., (5-M holds. 

Let M = (ap/a,) ' .  Now the development in Sec. 2 rhows that  the 

spectrum of (A,b) consists precisely of the real roots X of the equation 

(5.7) gU) = ^ + 
a2 

{\-\)2      {*.-\2f 

Since (5-7) has ^4 real roots, we know that two roots must lie in the internal 

{\,,\   ).     Now let n be the unique real root ol' 

-2a      2a 

U-V3  ^-X2)3 
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Th en, because there are two roots of (5'T) in (\ ,\p). 

(5.8) g(n) < 1 • 

We now show that (5-8) implies (5.^). 

Solving g'Cn) = 0 shows that 

^ 
=  M , 

whence 

"-H'iTs'V^l) ' 

Hence 

X2 ' ^ = iTM ^2'^     ' 

a1(l+M)
2   a2(l+M)

2 

g(u) =   + 
{X^f     rfi^-xj 

f  I1  ^ 

(1+M)2 a^ 

0-i)' 

(X2A1)2 

1   1 

a3 + a
3 

al + a2 

(4 * 4) 
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Thus g(n) < 1 implies 

:5.9) al + a2 < ^2^1 ^ 

which implies (5-5 )• Thus (5.3) is proved. 

Proof of (^.6).  We have a > 0,  ap > 0>  anci (5 •9)«  The above steps 

are reversable, and so g(|j ) < 1, whence there are k  real roots of gW)  = !• 

Thus theorem (5«2) is completely proved- 

Condition (5«^) says that neither X.  nor X*    is 0, and that the 

point b = (b ,b ) does not lie on an axis of the (x,^x«)-plane.  Condition 

(5.5) requires that (b ,b ) be inside a curve V    which depends only on 

the ratio \^/k  .     If ^oAi = ^>     for example, the curve V    is 

jb//^ l2b2|
2/3 =1. 

(-2,0) 

(0, -2/5) 

b. 
i 

Figure 1 
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In Figure 1 the number of points in the spectrum of (A,b) is 

indicated for different b in the first quadrant by integers in circles 

If  l^-oA-'I > 2'  the curve r includes values  [b.l > 1.  But 

|^2A-, | > 1 implies thai, on T,     [b0| < 1. 

6.  Geometrical interpretation. 

The surfaces ^(x) - k are similar conic surfaces with center b in 

the euclide-in n-space ^   of vectors x. The maximum problem (1.2) is to 

find the conic surface with maximum k which touches the constraint sur- 

face S,  the unit sphere in C   • The rotation of A to diagonal form is 

a rotation of C      (leaving S invariant, of course) which causes principal 

axes of the conic surfaces to coincide with the axes of n n 

The vector Ax - b is half the gradient of ^(xj, and x is the 

radius vector. Condition (1.5) merely states that at a point where ^(x) 

is stationary, for x on S, the surface *(x) = k is tangent to S. 

Fix x at a solution of (1.5)> and let t be real.  If the constant 

v of (1.5) is positive, the value of ^(tx) increases as t increases 

from 1; if \    is negative,  ^(tx) decreases as  t increases from 1. 

The main result of Sees. 2 and 3 is that the maxlnum problem of Sec. 

1 is solved for the largest value of \ satisfying (3.5), fo*' x on S. 

The authors see no obvious geometrical reason why this should be so. 

If all b.X.. / 0,  then Sec. 2 shows that any vector x = x    which 

makes ^(x) stationary on S  is uniquely determined by X.. 

Figure 2  shows, for n - 2 and 0 < \,  < \„,    a case where there are 
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! 
t ■ 

*   1 

4 distinct points of tangency of an ellipse with the unit circle. All 

ellipses have center b and common value of ^pA-i > 2. Since 

Figure 2 

XpA,   > 2,     it was  shown in Sec.  5 that  k distinct tangencies were possible 

for certain    b    outside    S. 

Whenever some    b,   = 0,    then,  provided that  (3.2) holds with the 

inequality sign    <,    we get more than one    x    belonging to a given   \.    That 

is illustrated in Fig.  3* where    n = 2    and    k = 1.    What is not obvious to 

the authors  is a geometrical reason why necessarily    X.  = X      in this case. 

another x 

Figure 3 
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7« A constrained least squares problem. 

Let C be an m x n matrix (m > n) and f an m-vector, both 

over the complex field. We wish to study the set of complex n-vectors y 

H l/? 
of euclidean length llyll = (y y)   = 1 such that 

(7.1) llCy-fll2 = (Cy-f)H(Cy-f) = min. 

The constraint is 

(7.2) \\yf  =yHy = 1 . 

Because euclidean length is invariant under unitary transformations, 

it is useful to rotate coordinates in both the space of y and the space 

of f. To do this, let r = rank(C), and write 

(7.3) C = l^DV , 

where U, V are unitary, and where the only non-zero elements of D are 

the first r elements of the leading diagonal, which we may arrange so 

that 

d, > d0 > • •. > d > 0 
1. —   d — — r 

Now let V; = x and Uf = g. Then 
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Cy  -  f   = l^DVy - lAlf 

= lAüx-g)     . 

Hence 

llCy-ff  =   ||Dx-gl 

(7.M 

1=1    i 1   i       i=r+l    
a 

The problem (T'l>  7'2)  is to minimize 

,2        f    ,2 
1=1   1 1 ^      1=1 a 

subject to the constraint 

(7.5) 
n 

1=1 

0     (1 = l,2,...,n-r) 

Nov let \ 

I 
I 
I 
I 
I 

n+l-i (l = n-r+l,...,n)  , 

0     (1 = l,2,...,n-r) 

and let b = 
Sn-H-1 

^Vl-1 
(1 = n-r+1,...,n) . 

We then have changed our problem to one of minimizing 
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(7.6) £   Mx^b  |: 
i=l 

jubject to the constraint il.^), where 

(7.7) 0 = X..  = ... = X.        < \      ^ < •• < x v     '' 1 n-r        n-r+1 - -    n 

This is precisely the minimum problem (1.2) of Sec.  1.    The special role of 

the    n-r    zero eigenvalues of    C C    becomes evident. 

Thus the general problem of the least-squares solution of    Cy = f 

with constraint  (7.2)  is a special case of  our minimum problem (1.2). 

8.     Lemmas from complex function theory. 

In this final section we state and prove three lemmas  relating partial 

derivatives of certain regular analytic  functions of several complex 

variables to gradients  of real-valued functions of vector variables.    This 

technique is common  in the study of second-order partial differential 

equations;     for example,  see  (9-1).    We  include the material mainly to 

keep cur treatment self-contained,  and partly to call explicit attention to 

the fact that the Lagrange multiplier    \    must be real even though complex 

variables are used. 

(8l) Lemma.     Let    *(X.,^)    be a regular analytic function of  two complex 

variables    X., u    such that,  for all real    x, y. 
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(8.2) F(x,y) = *(x+iy, x-iy) 

is real-valued. Then 

OF ^ .   dF d« 
^ + i^ = ■23r \=x+iy 

^=x-iy 

Proof. Differentiate (8.2); 

(R  ?\ dF _ d*     d« 

,fi , v dF  d*  ,  Ö«  . 

Add (8.3) to (8.1+) x i; 

ÖF + 1 ÖF = 2 ^ 

(8.5) Lemma. Let F and G be real-valued dlfferenLiable functions of real 

variables x, ,y-, ,... ,x ,y .  For abbreviation, let z, = x, + ly, , and let    11    n n   *   k   k   'k    

z = (z,,...,z ). Then^ for F(z) to be stationary at z = a vlth respect 

to all neighboring z such that G(z) = G(a), It Is necessary and 

sufficient that there exist a real Lagrange constant \    such that 

(8.6) * +1 *  J^l^^O 

for z = a and k = 1,...,n. 
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Proof. Condition (8.6) is nothing but the usual condition that the 

real gradient vector 

dF    OF   dF   dF        OF   OF \ 

be parallel to the vector 

(dG   dG   dG   ÖG       dG   dG \ 

The use of tne complex variables  z.  is unessential. 

Given any vector z = (z, ,...,2 j, we let z denote the vector of 

complex conjugates (z,,...,z ). 

(8.7) Lemma.  Let *(z,w) and \j/(z,v) be regular analytic functions of the 

tvo complex vector variables z = (z..,...,z ) and w = (v,,...,w ) with 

the property that *(z,z) and \j/(z,z) are real. Then *(z,z) is 

stationary at z = a with respect to all z such that >Jf(z,z) - ^(a,a), 

if and only if there exists a real Lagrange constant \    such that 

k     k 
dw,    ow. 

for z = a and w = a and k - l,2,...,n. 

Proof.  Let z = x + iy.  Then *(z,z) = F(x,y), ^(z,z) = G(x,y).  By 

lemma 8.1 applied to each variable z , 
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b*    _ OF + i OF 

k   k     k 

^3 " ^T      ^yT 

for z - a, w - a,  and k = l,...,n. 

Then lemma (8.7) follows from lemma (8.5) • 
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